Cart 0
A Design Approach for Adsorption Energy Systems Integrating Dynamic Modeling with Small-Scale Experiments
Click to zoom

Share this book

A Design Approach for Adsorption Energy Systems Integrating Dynamic Modeling with Small-Scale Experiments

Book Details

Format Paperback / Softback
ISBN-10 3958862586
ISBN-13 9783958862586
Publisher Verlag G. Mainz
Imprint Verlag G. Mainz
Country of Manufacture GB
Country of Publication GB
Publication Date Dec 19th, 2018
Print length 200 Pages
Weight 312 grams
Dimensions 20.90 x 14.80 x 1.40 cms
Product Classification: Mechanical engineering
Ksh 7,900.00
Werezi Extended Catalogue Delivery in 14 days

Delivery Location

Delivery fee: Select location

Delivery in 14 days

Secure
Quality
Fast
Adsorption energy systems can be driven by thermal energy from waste heat or the sun and thereby allow reducing fossil energy consumption and thus reduce global greenhouse gas emissions. Adsorption heat pumps and chillers can provide heating or cooling, adsorption thermal energy storage allows storing thermal energy. However, adsorption energy systems suffer from high investment costs due to low performance. Performance of adsorption energy systems strongly depends on the equilibrium properties of the working pair as well as heat and mass transfer mechanisms of the adsorption material in the adsorption energy system (adsorbent configuration). Evaluating new working pairs and adsorbent configurations is rather challenging: While the working pair's equilibrium properties can be determined with standardized measurement equipment, heat and mass transfer mechanisms cannot easily be determined, since they strongly depend on the full-scale adsorption energy system. Construction and operation of full-scale experiments requires high effort. Besides, often only small amounts of an adsorbent configuration are available, which are insufficient for full-scale experiments. To resolve these drawbacks, this thesis provides and validates a comprehensive method to determine the performance of working pairs and adsorbent configurations in adsorption energy systems from simple small-scale experiments. As a representative class of adsorption energy systems, adsorption chillers are investigated in this thesis. A small-scale Large-Temperature-Jump experiment is combined with dynamic modeling of the transient heat and mass transfer processes. Additionally, the experiment is extended by an infrared camera. The additional temperature information allows to distinguish and to determine the time-resolved effective heat transfer coefficient and diffusion coefficient in the heat and mass transfer model. The heat transfer and diffusion coefficients are inserted into a full-scale adsorption chiller model to predict the performance. Exemplarily, a commercial available silica gel and the adsorbent class of metal-organic frameworks (MOFs) are evaluated for an adsorption chiller application. The method is validated with experimental data of a full-scale prototype adsorption chiller and shows high accuracy. Furthermore, the method allows optimizing the adsorption chiller for a given working pair or adsorbent configuration and allows identifying bottlenecks and potential for improvement of the working pairs. In summary, this thesis bridges the gap between small-scale experiments and modeling of full-scale adsorption energy systems. The method allows for a comprehensive and reliable evaluation of working pairs and adsorbent configurations for adsorption energy systems.

Adsorption energy systems can be driven by thermal energy from waste heat or the sun and thereby allow reducing fossil energy consumption and thus reduce global greenhouse gas emissions. Adsorption heat pumps and chillers can provide heating or cooling, adsorption thermal energy storage allows storing thermal energy. However, adsorption energy systems suffer from high investment costs due to low performance.

Performance of adsorption energy systems strongly depends on the equilibrium properties of the working pair as well as heat and mass transfer mechanisms of the adsorption material in the adsorption energy system (adsorbent configuration).

Evaluating new working pairs and adsorbent configurations is rather challenging: While the working pair''s equilibrium properties can be determined with standardized measurement equipment, heat and mass transfer mechanisms cannot easily be determined, since they strongly depend on the full-scale adsorption energy system. Construction and operation of full-scale experiments requires high effort. Besides, often only small amounts of an adsorbent configuration are available, which are insufficient for full-scale experiments.

To resolve these drawbacks, this thesis provides and validates a comprehensive method to determine the performance of working pairs and adsorbent configurations in adsorption energy systems from simple small-scale experiments. As a representative class of adsorption energy systems, adsorption chillers are investigated in this thesis. A small-scale Large-Temperature-Jump experiment is combined with dynamic modeling of the transient heat and mass transfer processes. Additionally, the experiment is extended by an infrared camera. The additional temperature information allows to distinguish and to determine the time-resolved effective heat transfer coefficient and diffusion coefficient in the heat and mass transfer model.

The heat transfer and diffusion coefficients are inserted into a full-scale adsorption chiller model to predict the performance. Exemplarily, a commercial available silica gel and the adsorbent class of metal-organic frameworks (MOFs) are evaluated for an adsorption chiller application.

The method is validated with experimental data of a full-scale prototype adsorption chiller and shows high accuracy. Furthermore, the method allows optimizing the adsorption chiller for a given working pair or adsorbent configuration and allows identifying bottlenecks and potential for improvement of the working pairs. In summary, this thesis bridges the gap between small-scale experiments and modeling of full-scale adsorption energy systems. The method allows for a comprehensive and reliable evaluation of working pairs and adsorbent configurations for adsorption energy systems.


Get A Design Approach for Adsorption Energy Systems Integrating Dynamic Modeling with Small-Scale Experiments by at the best price and quality guaranteed only at Werezi Africa's largest book ecommerce store. The book was published by Verlag G. Mainz and it has pages.

Mind, Body, & Spirit

Price

Ksh 7,900.00

Shopping Cart

Africa largest book store

Sub Total:
Ebooks

Digital Library
Coming Soon

Our digital collection is currently being curated to ensure the best possible reading experience on Werezi. We'll be launching our Ebooks platform shortly.