A Generalization of Bohr-Mollerup's Theorem for Higher Order Convex Functions
1st ed. 2022
Book Details
Format
Paperback / Softback
Book Series
Developments in Mathematics
ISBN-10
3030950905
ISBN-13
9783030950903
Edition
1st ed. 2022
Publisher
Springer Nature Switzerland AG
Imprint
Springer Nature Switzerland AG
Country of Manufacture
GB
Country of Publication
GB
Publication Date
Jul 7th, 2022
Print length
323 Pages
Product Classification:
Functional analysis & transformsDifferential calculus & equations
Ksh 6,300.00
Werezi Extended Catalogue
Delivery in 14 days
Delivery Location
Delivery fee: Select location
Delivery in 14 days
Secure
Quality
Fast
In 1922, Harald Bohr and Johannes Mollerup established a remarkable characterization of the Euler gamma function using its log-convexity property. A decade later, Emil Artin investigated this result and used it to derive the basic properties of the gamma function using elementary methods of the calculus. Bohr-Mollerup's theorem was then adopted by Nicolas Bourbaki as the starting point for his exposition of the gamma function. This open access book develops a far-reaching generalization of Bohr-Mollerup's theorem to higher order convex functions, along lines initiated by Wolfgang Krull, Roger Webster, and some others but going considerably further than past work. In particular, this generalization shows using elementary techniques that a very rich spectrum of functions satisfy analogues of several classical properties of the gamma function, including Bohr-Mollerup's theorem itself, Euler's reflection formula, Gauss' multiplication theorem, Stirling's formula, and Weierstrass' canonical factorization. The scope of the theory developed in this work is illustrated through various examples, ranging from the gamma function itself and its variants and generalizations (q-gamma, polygamma, multiple gamma functions) to important special functions such as the Hurwitz zeta function and the generalized Stieltjes constants. This volume is also an opportunity to honor the 100th anniversary of Bohr-Mollerup's theorem and to spark the interest of a large number of researchers in this beautiful theory.
In 1922, Harald Bohr and Johannes Mollerup established a remarkable characterization of the Euler gamma function using its log-convexity property. A decade later, Emil Artin investigated this result and used it to derive the basic properties of the gamma function using elementary methods of the calculus. Bohr-Mollerup''s theorem was then adopted by Nicolas Bourbaki as the starting point for his exposition of the gamma function.
This open access book develops a far-reaching generalization of Bohr-Mollerup''s theorem to higher order convex functions, along lines initiated by Wolfgang Krull, Roger Webster, and some others but going considerably further than past work. In particular, this generalization shows using elementary techniques that a very rich spectrum of functions satisfy analogues of several classical properties of the gamma function, including Bohr-Mollerup''s theorem itself, Euler''s reflection formula, Gauss'' multiplication theorem, Stirling''s formula, and Weierstrass'' canonical factorization.
The scope of the theory developed in this work is illustrated through various examples, ranging from the gamma function itself and its variants and generalizations (q-gamma, polygamma, multiple gamma functions) to important special functions such as the Hurwitz zeta function and the generalized Stieltjes constants.
This volume is also an opportunity to honor the 100th anniversary of Bohr-Mollerup''s theorem and to spark the interest of a large number of researchers in this beautiful theory.
This open access book develops a far-reaching generalization of Bohr-Mollerup''s theorem to higher order convex functions, along lines initiated by Wolfgang Krull, Roger Webster, and some others but going considerably further than past work. In particular, this generalization shows using elementary techniques that a very rich spectrum of functions satisfy analogues of several classical properties of the gamma function, including Bohr-Mollerup''s theorem itself, Euler''s reflection formula, Gauss'' multiplication theorem, Stirling''s formula, and Weierstrass'' canonical factorization.
The scope of the theory developed in this work is illustrated through various examples, ranging from the gamma function itself and its variants and generalizations (q-gamma, polygamma, multiple gamma functions) to important special functions such as the Hurwitz zeta function and the generalized Stieltjes constants.
This volume is also an opportunity to honor the 100th anniversary of Bohr-Mollerup''s theorem and to spark the interest of a large number of researchers in this beautiful theory.
Get A Generalization of Bohr-Mollerup's Theorem for Higher Order Convex Functions by at the best price and quality guaranteed only at Werezi Africa's largest book ecommerce store. The book was published by Springer Nature Switzerland AG and it has pages.