Advanced Fractional Differential & Integral Equations
Book Details
Format
Hardback or Cased Book
ISBN-10
1634631099
ISBN-13
9781634631099
Publisher
Nova Science Publishers Inc
Imprint
Nova Science Publishers Inc
Country of Manufacture
US
Country of Publication
GB
Publication Date
Dec 1st, 2014
Print length
414 Pages
Weight
848 grams
Dimensions
18.70 x 26.00 x 2.60 cms
Product Classification:
Differential calculus & equationsIntegral calculus & equations
Ksh 39,950.00
Not available
Delivery Location
Delivery fee: Select location
Secure
Quality
Fast
Fractional calculus deals with extensions of derivatives and integrals to non-integer orders. It represents a powerful tool in applied mathematics to study a myriad of problems from different fields of science and engineering, with many break-through results found in mathematical physics, finance, hydrology, biophysics, thermodynamics, control theory, statistical mechanics, astrophysics, cosmology and bioengineering. This book is devoted to the existence and uniqueness of solutions and some Ulam''s type stability concepts for various classes of functional differential and integral equations of fractional order. Some equations present delay which may be finite, infinite or state-dependent. Others are subject to multiple time delay effect. The tools used include classical fixed point theorems. Other tools are based on the measure of non-compactness together with appropriates fixed point theorems. Each chapter concludes with a section devoted to notes and bibliographical remarks and all the presented resultsare illustrated by examples. The content of the book is new and complements the existing literature in Fractional Calculus. It is useful for researchers and graduate students for research, seminars and advanced graduate courses, in pure and applied mathematics, engineering, biology and other applied sciences.
Get Advanced Fractional Differential & Integral Equations by at the best price and quality guaranteed only at Werezi Africa's largest book ecommerce store. The book was published by Nova Science Publishers Inc and it has pages.