Cart 0
Bayesian Inference for Stochastic Processes
Click to zoom

Share this book

Bayesian Inference for Stochastic Processes

Book Details

Format Hardback or Cased Book
ISBN-10 1138196134
ISBN-13 9781138196131
Publisher Taylor & Francis Ltd
Imprint CRC Press
Country of Manufacture GB
Country of Publication GB
Publication Date Dec 15th, 2017
Print length 448 Pages
Weight 952 grams
Dimensions 18.50 x 26.00 x 2.90 cms
Product Classification: Probability & statistics
Ksh 30,600.00
Werezi Extended Catalogue Delivery in 28 days

Delivery Location

Delivery fee: Select location

Delivery in 28 days

Secure
Quality
Fast
The book aims to introduce Bayesian inference methods for stochastic processes. The Bayesian approach has advantages compared to non-Bayesian, among which is the optimal use of prior information via data from previous similar experiments. Examples from biology, economics, and astronomy reinforce the basic concepts of the subject. R and WinBUGS.

This is the first book designed to introduce Bayesian inference procedures for stochastic processes. There are clear advantages to the Bayesian approach (including the optimal use of prior information). Initially, the book begins with a brief review of Bayesian inference and uses many examples relevant to the analysis of stochastic processes, including the four major types, namely those with discrete time and discrete state space and continuous time and continuous state space. The elements necessary to understanding stochastic processes are then introduced, followed by chapters devoted to the Bayesian analysis of such processes. It is important that a chapter devoted to the fundamental concepts in stochastic processes is included. Bayesian inference (estimation, testing hypotheses, and prediction) for discrete time Markov chains, for Markov jump processes, for normal processes (e.g. Brownian motion and the Ornstein–Uhlenbeck process), for traditional time series, and, lastly, for point and spatial processes are described in detail. Heavy emphasis is placed on many examples taken from biology and other scientific disciplines. In order analyses of stochastic processes, it will use R and WinBUGS.

Features:

  • Uses the Bayesian approach to make statistical Inferences about stochastic processes
  • The R package is used to simulate realizations from different types of processes
  • Based on realizations from stochastic processes, the WinBUGS package will provide the Bayesian analysis (estimation, testing hypotheses, and prediction) for the unknown parameters of stochastic processes
  • To illustrate the Bayesian inference, many examples taken from biology, economics, and astronomy will reinforce the basic concepts of the subject
  • A practical approach is implemented by considering realistic examples of interest to the scientific community
  • WinBUGS and R code are provided in the text, allowing the reader to easily verify the results of the inferential procedures found in the many examples of the book

Readers with a good background in two areas, probability theory and statistical inference, should be able to master the essential ideas of this book.


Get Bayesian Inference for Stochastic Processes by at the best price and quality guaranteed only at Werezi Africa's largest book ecommerce store. The book was published by Taylor & Francis Ltd and it has pages.

Mind, Body, & Spirit

Price

Ksh 30,600.00

Shopping Cart

Africa largest book store

Sub Total:
Ebooks

Digital Library
Coming Soon

Our digital collection is currently being curated to ensure the best possible reading experience on Werezi. We'll be launching our Ebooks platform shortly.