Cart 0
Discrete-Time Inverse Optimal Control for Nonlinear Systems
Click to zoom

Share this book

Discrete-Time Inverse Optimal Control for Nonlinear Systems

Book Details

Format Hardback or Cased Book
ISBN-10 1466580879
ISBN-13 9781466580879
Publisher Taylor & Francis Inc
Imprint CRC Press Inc
Country of Manufacture GB
Country of Publication GB
Publication Date Apr 8th, 2013
Print length 268 Pages
Weight 514 grams
Dimensions 24.30 x 15.70 x 2.40 cms
Ksh 39,600.00
Re-Printing

Delivery Location

Delivery fee: Select location

Secure
Quality
Fast

This book presents a novel inverse optimal control approach for stabilization and trajectory tracking of discrete-time nonlinear systems. This approach avoids the need to solve the associated Hamilton-Jacobi-Bellman equation and minimizes a cost functional, resulting in efficient controllers. The book also proposes the use of recurrent neural networks to model discrete-time nonlinear systems. Combined with the inverse optimal control scheme, such models constitute a powerful tool to deal with uncertainties such as unmodeled dynamics and disturbances. Simulations illustrate the effectiveness of the synthesized controllers.

Discrete-Time Inverse Optimal Control for Nonlinear Systems proposes a novel inverse optimal control scheme for stabilization and trajectory tracking of discrete-time nonlinear systems. This avoids the need to solve the associated Hamilton-Jacobi-Bellman equation and minimizes a cost functional, resulting in a more efficient controller.

Design More Efficient Controllers for Stabilization and Trajectory Tracking of Discrete-Time Nonlinear Systems

The book presents two approaches for controller synthesis: the first based on passivity theory and the second on a control Lyapunov function (CLF). The synthesized discrete-time optimal controller can be directly implemented in real-time systems. The book also proposes the use of recurrent neural networks to model discrete-time nonlinear systems. Combined with the inverse optimal control approach, such models constitute a powerful tool to deal with uncertainties such as unmodeled dynamics and disturbances.

Learn from Simulations and an In-Depth Case Study

The authors include a variety of simulations to illustrate the effectiveness of the synthesized controllers for stabilization and trajectory tracking of discrete-time nonlinear systems. An in-depth case study applies the control schemes to glycemic control in patients with type 1 diabetes mellitus, to calculate the adequate insulin delivery rate required to prevent hyperglycemia and hypoglycemia levels.

The discrete-time optimal and robust control techniques proposed can be used in a range of industrial applications, from aerospace and energy to biomedical and electromechanical systems. Highlighting optimal and efficient control algorithms, this is a valuable resource for researchers, engineers, and students working in nonlinear system control.


Get Discrete-Time Inverse Optimal Control for Nonlinear Systems by at the best price and quality guaranteed only at Werezi Africa's largest book ecommerce store. The book was published by Taylor & Francis Inc and it has pages.

Mind, Body, & Spirit

Shopping Cart

Africa largest book store

Sub Total:
Ebooks

Digital Library
Coming Soon

Our digital collection is currently being curated to ensure the best possible reading experience on Werezi. We'll be launching our Ebooks platform shortly.