Cart 0
Distributed Machine Learning Patterns
Click to zoom

Share this book

Distributed Machine Learning Patterns

Book Details

Format Paperback / Softback
ISBN-10 1617299022
ISBN-13 9781617299025
Publisher Manning Publications
Imprint Manning Publications
Country of Manufacture GB
Country of Publication GB
Publication Date Jan 17th, 2024
Print length 375 Pages
Weight 498 grams
Dimensions 18.80 x 23.60 x 1.60 cms
Product Classification: Machine learning
Ksh 8,300.00
Publisher Out of Stock

Delivery Location

Delivery fee: Select location

Secure
Quality
Fast
Practical patterns for scaling machine learning from your laptop to a distributed cluster.

In Distributed Machine Learning Patterns you will learn how to:

  • Apply distributed systems patterns to build scalable and reliable machine learning projects
  • Construct machine learning pipelines with data ingestion, distributed training, model serving, and more
  • Automate machine learning tasks with Kubernetes, TensorFlow, Kubeflow, and Argo Workflows
  • Make trade offs between different patterns and approaches
  • Manage and monitor machine learning workloads at scale

Distributed Machine Learning Patterns
 teaches you how to scale machine learning models from your laptop to large distributed clusters. In it, you''ll learn how to apply established distributed systems patterns to machine learning projects, and explore new ML-specific patterns as well. Firmly rooted in the real world, this book demonstrates how to apply patterns using examples based in TensorFlow, Kubernetes, Kubeflow, and Argo Workflows. Real-world scenarios, hands-on projects, and clear, practical DevOps techniques let you easily launch, manage, and monitor cloud-native distributed machine learning pipelines.

Scaling up models from standalone devices to large distributed clusters is one of the biggest challenges faced by modern machine learning practitioners. Distributed Machine Learning Patterns teaches you how to scale machine learning models from your laptop to large distributed clusters. In Distributed Machine Learning Patterns, you''ll learn how to apply established distributed systems patterns to machine learning projects, and explore new ML-specific patterns as well. Firmly rooted in the real world, this book demonstrates how to apply patterns using examples based in TensorFlow, Kubernetes, Kubeflow, and Argo Workflows. Real-world scenarios, hands-on projects, and clear, practical DevOps techniques let you easily launch, manage, and monitor cloud-native distributed machine learning pipelines.
Practical patterns for scaling machine learning from your laptop to a distributed cluster.

In  Distributed Machine Learning Patterns you will learn how to:

  • Apply distributed systems patterns to build scalable and reliable machine learning projects
  • Construct machine learning pipelines with data ingestion, distributed training, model serving, and more
  • Automate machine learning tasks with Kubernetes, TensorFlow, Kubeflow, and Argo Workflows
  • Make trade offs between different patterns and approaches
  • Manage and monitor machine learning workloads at scale
Scaling up models from standalone devices to large distributed clusters is one of the biggest challenges faced by modern machine learning practitioners. Distributed Machine Learning Patterns teaches you how to scale machine learning models from your laptop to large distributed clusters. 

In Distributed Machine Learning Patterns, you''ll learn how to apply established distributed systems patterns to machine learning projects, and explore new ML-specific patterns as well. Firmly rooted in the real world, this book demonstrates how to apply patterns using examples based in TensorFlow, Kubernetes, Kubeflow, and Argo Workflows. Real-world scenarios, hands-on projects, and clear, practical DevOps techniques let you easily launch, manage, and monitor cloud-native distributed machine learning pipelines

Distributed Machine Learning Patterns teaches you how to scale machine learning models from your laptop to large distributed clusters. In it, you''ll learn how to apply established distributed systems patterns to machine learning projects, and explore new ML-specific patterns as well. Firmly rooted in the real world, this book demonstrates how to apply patterns using examples based in TensorFlow, Kubernetes, Kubeflow, and Argo Workflows. Real-world scenarios, hands-on projects, and clear, practical DevOps techniques let you easily launch, manage, and monitor cloud-native distributed machine learning pipelines.

about the technology

Scaling up models from standalone devices to large distributed clusters is one of the biggest challenges faced by modern machine learning practitioners. Distributing machine learning systems allow developers to handle extremely large datasets across multiple clusters, take advantage of automation tools, and benefit from hardware accelerations. In this book, Kubeflow co-chair Yuan Tang shares patterns, techniques, and experience gained from years spent building and managing cutting-edge distributed machine learning infrastructure.

about the book

Distributed Machine Learning Patterns is filled with practical patterns for running machine learning systems on distributed Kubernetes clusters in the cloud. Each pattern is designed to help solve common challenges faced when building distributed machine learning systems, including supporting distributed model training, handling unexpected failures, and dynamic model serving traffic. Real-world scenarios provide clear examples of how to apply each pattern, alongside the potential trade offs for each approach. Once you''ve mastered these cutting edge techniques, you''ll put them all into practice and finish up by building a comprehensive distributed machine learning system.

Get Distributed Machine Learning Patterns by at the best price and quality guaranteed only at Werezi Africa's largest book ecommerce store. The book was published by Manning Publications and it has pages.

Mind, Body, & Spirit

Shopping Cart

Africa largest book store

Sub Total:
Ebooks

Digital Library
Coming Soon

Our digital collection is currently being curated to ensure the best possible reading experience on Werezi. We'll be launching our Ebooks platform shortly.