Cart 0
Grammar-Based Feature Generation for Time-Series Prediction
Click to zoom

Share this book

Grammar-Based Feature Generation for Time-Series Prediction

2015 ed.

Book Details

Format Paperback / Softback
ISBN-10 9812874100
ISBN-13 9789812874108
Edition 2015 ed.
Publisher Springer Verlag, Singapore
Imprint Springer Verlag, Singapore
Country of Manufacture SG
Country of Publication GB
Publication Date Mar 17th, 2015
Print length 99 Pages
Product Classification: Machine learningPattern recognition
Ksh 8,100.00
Werezi Extended Catalogue Delivery in 28 days

Delivery Location

Delivery fee: Select location

Delivery in 28 days

Secure
Quality
Fast
This book proposes a novel approach for time-series prediction using machine learning techniques with automatic feature generation. The proposed method can be applied to a wide range of machine learning architectures and applications to represent complex feature dependencies explicitly when machine learning cannot achieve this by itself.
This book proposes a novel approach for time-series prediction using machine learning techniques with automatic feature generation. Application of machine learning techniques to predict time-series continues to attract considerable attention due to the difficulty of the prediction problems compounded by the non-linear and non-stationary nature of the real world time-series. The performance of machine learning techniques, among other things, depends on suitable engineering of features. This book proposes a systematic way for generating suitable features using context-free grammar. A number of feature selection criteria are investigated and a hybrid feature generation and selection algorithm using grammatical evolution is proposed. The book contains graphical illustrations to explain the feature generation process. The proposed approaches are demonstrated by predicting the closing price of major stock market indices, peak electricity load and net hourly foreign exchange client trade volume. The proposed method can be applied to a wide range of machine learning architectures and applications to represent complex feature dependencies explicitly when machine learning cannot achieve this by itself. Industrial applications can use the proposed technique to improve their predictions.

Get Grammar-Based Feature Generation for Time-Series Prediction by at the best price and quality guaranteed only at Werezi Africa's largest book ecommerce store. The book was published by Springer Verlag, Singapore and it has pages.

Mind, Body, & Spirit

Price

Ksh 8,100.00

Shopping Cart

Africa largest book store

Sub Total:
Ebooks

Digital Library
Coming Soon

Our digital collection is currently being curated to ensure the best possible reading experience on Werezi. We'll be launching our Ebooks platform shortly.