Cart 0
Multivariate Public Key Cryptosystems
Click to zoom

Share this book

Multivariate Public Key Cryptosystems

2nd ed. 2020

Book Details

Format Hardback or Cased Book
ISBN-10 1071609858
ISBN-13 9781071609859
Edition 2nd ed. 2020
Publisher Springer-Verlag New York Inc.
Imprint Springer-Verlag New York Inc.
Country of Manufacture GB
Country of Publication GB
Publication Date Oct 1st, 2020
Print length 253 Pages
Ksh 25,200.00
Werezi Extended Catalogue Delivery in 28 days

Delivery Location

Delivery fee: Select location

Delivery in 28 days

Secure
Quality
Fast
This book discusses the current research concerning public key cryptosystems. It begins with an introduction to the basic concepts of multivariate cryptography and the history of this field. The authors provide a detailed description and security analysis of the most important multivariate public key schemes, including the four multivariate signature schemes participating as second round candidates in the NIST standardization process for post-quantum cryptosystems. Furthermore, this book covers the Simple Matrix encryption scheme, which is currently the most promising multivariate public key encryption scheme. This book also covers the current state of security analysis methods for Multivariate Public Key Cryptosystems including the algorithms and theory of solving systems of multivariate polynomial equations over finite fields. Through the book’s website, interested readers can find source code to the algorithms handled in this book. In 1994, Dr. Peter Shor from Bell Laboratories proposed a quantum algorithm solving the Integer Factorization and the Discrete Logarithm problem in polynomial time, thus making all of the currently used public key cryptosystems, such as RSA and ECC insecure. Therefore, there is an urgent need for alternative public key schemes which are resistant against quantum computer attacks. Researchers worldwide, as well as companies and governmental organizations have put a tremendous effort into the development of post-quantum public key cryptosystems to meet this challenge. One of the most promising candidates for this are Multivariate Public Key Cryptosystems (MPKCs). The public key of an MPKC is a set of multivariate polynomials over a small finite field. Especially for digital signatures, numerous well-studied multivariate schemes offering very short signatures and high efficiency exist. The fact that these schemes work over small finite fields, makes them suitable not only for interconnected computer systems,but also for small devices with limited resources, which are used in ubiquitous computing. This book gives a systematic introduction into the field of Multivariate Public Key Cryptosystems (MPKC), and presents the most promising multivariate schemes for digital signatures and encryption. Although, this book was written more from a computational perspective, the authors try to provide the necessary mathematical background. Therefore, this book is suitable for a broad audience. This would include  researchers working in either computer science or mathematics interested in this exciting new field, or as a secondary textbook for a course in MPKC suitable for beginning graduate students in mathematics or computer science. Information security experts in industry, computer scientists and mathematicians would also find  this book valuable as a guide for understanding the basic mathematical structures necessary to implement multivariate cryptosystems for practical applications.
This book discusses the current research concerning public key cryptosystems. It begins with an introduction to the basic concepts of multivariate cryptography and the history of this field. The authors provide a detailed description and security analysis of the most important multivariate public key schemes, including the four multivariate signature schemes participating as second round candidates in the NIST standardization process for post-quantum cryptosystems. Furthermore, this book covers the Simple Matrix encryption scheme, which is currently the most promising multivariate public key encryption scheme. This book also covers the current state of security analysis methods for Multivariate Public Key Cryptosystems including the algorithms and theory of solving systems of multivariate polynomial equations over finite fields. Through the book''s website, interested readers can find source code to the algorithms handled in this book.

In 1994, Dr. Peter Shor from Bell Laboratories proposed a quantum algorithm solving the Integer Factorization and the Discrete Logarithm problem in polynomial time, thus making all of the currently used public key cryptosystems, such as RSA and ECC insecure. Therefore, there is an urgent need for alternative public key schemes which are resistant against quantum computer attacks. Researchers worldwide, as well as companies and governmental organizations have put a tremendous effort into the development of post-quantum public key cryptosystems to meet this challenge. One of the most promising candidates for this are Multivariate Public Key Cryptosystems (MPKCs). The public key of an MPKC is a set of multivariate polynomials over a small finite field. Especially for digital signatures, numerous well-studied multivariate schemes offering very short signatures and high efficiency exist. The fact that these schemes work over small finite fields, makes them suitable not only for interconnected computer systems, but also for small devices with limited resources, which are used in ubiquitous computing.

This book gives a systematic introduction into the field of Multivariate Public Key Cryptosystems (MPKC), and presents the most promising multivariate schemes for digital signatures and encryption. Although, this book was written more from a computational perspective, the authors try to provide the necessary mathematical background. Therefore, this book is suitable for a broad audience. This would include  researchers working in either computer science or mathematics interested in this exciting new field, or as a secondary textbook for a course in MPKC suitable for beginning graduate students in mathematics or computer science. Information security experts in industry, computer scientists and mathematicians would also find  this book valuable as a guide for understanding the basic mathematical structures necessary to implement multivariate cryptosystems for practical applications.

Get Multivariate Public Key Cryptosystems by at the best price and quality guaranteed only at Werezi Africa's largest book ecommerce store. The book was published by Springer-Verlag New York Inc. and it has pages.

Mind, Body, & Spirit

Price

Ksh 25,200.00

Shopping Cart

Africa largest book store

Sub Total:
Ebooks

Digital Library
Coming Soon

Our digital collection is currently being curated to ensure the best possible reading experience on Werezi. We'll be launching our Ebooks platform shortly.