Cart 0
Prediction and Analysis for Knowledge Representation and Machine Learning
Click to zoom

Share this book

Prediction and Analysis for Knowledge Representation and Machine Learning

Book Details

Format Paperback / Softback
ISBN-10 036764911X
ISBN-13 9780367649111
Publisher Taylor & Francis Ltd
Imprint Chapman & Hall/CRC
Country of Manufacture GB
Country of Publication GB
Publication Date Oct 7th, 2024
Print length 220 Pages
Weight 430 grams
Ksh 10,100.00 Werezi Extended Catalogue

Delivery Location

Delivery fee: Select location

Delivery in 28 days

Secure
Quality
Fast
This book illustrates different techniques and structures that are used in knowledge representation and machine learning. The aim of this book is to draw the attention of graduates, researchers and practitioners working in field of information technology and computer science (in knowledge representation in machine learning).

A number of approaches are being defined for statistics and machine learning. These approaches are used for the identification of the process of the system and the models created from the system’s perceived data, assisting scientists in the generation or refinement of current models. Machine learning is being studied extensively in science, particularly in bioinformatics, economics, social sciences, ecology, and climate science, but learning from data individually needs to be researched more for complex scenarios. Advanced knowledge representation approaches that can capture structural and process properties are necessary to provide meaningful knowledge to machine learning algorithms. It has a significant impact on comprehending difficult scientific problems.

Prediction and Analysis for Knowledge Representation and Machine Learning demonstrates various knowledge representation and machine learning methodologies and architectures that will be active in the research field. The approaches are reviewed with real-life examples from a wide range of research topics. An understanding of a number of techniques and algorithms that are implemented in knowledge representation in machine learning is available through the book’s website.

Features:

  • Examines the representational adequacy of needed knowledge representation
  • Manipulates inferential adequacy for knowledge representation in order to produce new knowledge derived from the original information
  • Improves inferential and acquisition efficiency by applying automatic methods to acquire new knowledge
  • Covers the major challenges, concerns, and breakthroughs in knowledge representation and machine learning using the most up-to-date technology
  • Describes the ideas of knowledge representation and related technologies, as well as their applications, in order to help humankind become better and smarter

This book serves as a reference book for researchers and practitioners who are working in the field of information technology and computer science in knowledge representation and machine learning for both basic and advanced concepts. Nowadays, it has become essential to develop adaptive, robust, scalable, and reliable applications and also design solutions for day-to-day problems. The edited book will be helpful for industry people and will also help beginners as well as high-level users for learning the latest things, which include both basic and advanced concepts.


Get Prediction and Analysis for Knowledge Representation and Machine Learning by at the best price and quality guaranteed only at Werezi Africa's largest book ecommerce store. The book was published by Taylor & Francis Ltd and it has pages.

Mind, Body, & Spirit

Price

Ksh 10,100.00

Shopping Cart

Africa largest book store

Sub Total:
Ebooks

Digital Library
Coming Soon

Our digital collection is currently being curated to ensure the best possible reading experience on Werezi. We'll be launching our Ebooks platform shortly.