Cart 0
Prediction of Reaction Rate Constants for the Synthesis of Microgels
Click to zoom

Share this book

Prediction of Reaction Rate Constants for the Synthesis of Microgels

Book Details

Format Paperback / Softback
ISBN-10 3958864252
ISBN-13 9783958864252
Publisher Verlag G. Mainz
Imprint Verlag G. Mainz
Country of Manufacture GB
Country of Publication GB
Publication Date Oct 18th, 2021
Print length 163 Pages
Weight 230 grams
Dimensions 20.90 x 14.90 x 1.00 cms
Product Classification: Mechanical engineering
Ksh 7,900.00
Werezi Extended Catalogue Delivery in 14 days

Delivery Location

Delivery fee: Select location

Delivery in 14 days

Secure
Quality
Fast
The accurate prediction of reaction kinetics data, e.g., reaction rate constants, for the microgel synthesis is highly desired because its usage in model-based design approaches promises the development of more specialized microgels and enables new applications. The complexity and the diversity of the microgel synthesis, however, often prevent experimental approaches but depict challenges for prediction approaches, as well. Therefore, this thesis analyzes a wide range of aspects relevant for the microgel synthesis individually and proposes prediction strategies for each. Here, the focus is on three main aspects: (i) The prediction of reaction kinetics in homogenous liquid reaction environments by combining high-level density functional theory and COSMO-RS, (ii) improving the property prediction of ionic species by applying the Cluster-Continuum approach and analyzing the uncertainty of the reference data, and (iii) enabling the kinetics prediction for inhomogeneous reaction environments with ReaxFF reactive molecular dynamics (MD) simulations. The results show that macroscopic properties of microgels, e.g., the crosslinker distribution, can be linked to the elementary reaction kinetics. In addition, the prediction of the solvation free energy of ionic solutes dissolved in neutral solvents is achieved with a deviation of just 2.0 kcal mol-1, which removes a main bottleneck for reaction kinetics prediction of such ionic systems. Furthermore, analyzing the statistical uncertainty of rare events in reactive MD simulations revealed that just a few reaction events are sufficient to obtain rate constants of sufficient quality. This is a key finding for the study of the microgel synthesis in reactive MD simulations because the required large system sizes and limited computational resources prevent the observation of more events practically. Also, force fields and their parametrizations should be evaluated regarding the eligibility for studying the microgel synthesis reactions based on the correct description of the vinyl group. In total, this thesis develops and presents a toolbox for reaction kinetics predictions for the microgel synthesis, which allows for accurate predictions over a wide range of different synthesis systems and enables further modeling and design approaches.

The accurate prediction of reaction kinetics data, e.g., reaction rate constants, for the microgel synthesis is highly desired because its usage in model-based design approaches promises the development of more specialized microgels and enables new applications. The complexity and the diversity of the microgel synthesis, however, often prevent experimental approaches but depict challenges for prediction approaches, as well. Therefore, this thesis analyzes a wide range of aspects relevant for the microgel synthesis individually and proposes prediction strategies for each.

Here, the focus is on three main aspects: (i) The prediction of reaction kinetics in homogenous liquid reaction environments by combining high-level density functional theory and COSMO-RS, (ii) improving the property prediction of ionic species by applying the Cluster-Continuum approach and analyzing the uncertainty of the reference data, and (iii) enabling the kinetics prediction for inhomogeneous reaction environments with ReaxFF reactive molecular dynamics (MD) simulations.

The results show that macroscopic properties of microgels, e.g., the crosslinker distribution, can be linked to the elementary reaction kinetics. In addition, the prediction of the solvation free energy of ionic solutes dissolved in neutral solvents is achieved with a deviation of just 2.0 kcal mol−1, which removes a main bottleneck for reaction kinetics prediction of such ionic systems. Furthermore, analyzing the statistical uncertainty of rare events in reactive MD simulations revealed that just a few reaction events are sufficient to obtain rate constants of sufficient quality. This is a key finding for the study of the microgel synthesis in reactive MD simulations because the required large system sizes and limited computational resources prevent the observation of more events practically. Also, force fields and their parametrizations should be evaluated regarding the eligibility for studying the microgel synthesis reactions based on the correct description of the vinyl group.

In total, this thesis develops and presents a toolbox for reaction kinetics predictions for the microgel synthesis, which allows for accurate predictions over a wide range of different synthesis systems and enables further modeling and design approaches.


Get Prediction of Reaction Rate Constants for the Synthesis of Microgels by at the best price and quality guaranteed only at Werezi Africa's largest book ecommerce store. The book was published by Verlag G. Mainz and it has pages.

Mind, Body, & Spirit

Price

Ksh 7,900.00

Shopping Cart

Africa largest book store

Sub Total:
Ebooks

Digital Library
Coming Soon

Our digital collection is currently being curated to ensure the best possible reading experience on Werezi. We'll be launching our Ebooks platform shortly.