Topics Surrounding the Combinatorial Anabelian Geometry of Hyperbolic Curves II : Tripods and Combinatorial Cuspidalization
1st ed. 2022
Book Details
Format
Paperback / Softback
Book Series
Lecture Notes in Mathematics
ISBN-10
9811910952
ISBN-13
9789811910951
Edition
1st ed. 2022
Publisher
Springer Verlag, Singapore
Imprint
Springer Verlag, Singapore
Country of Manufacture
GB
Country of Publication
GB
Publication Date
May 22nd, 2022
Print length
150 Pages
Weight
284 grams
Dimensions
15.60 x 23.30 x 1.30 cms
Product Classification:
Number theoryAlgebraic geometry
Ksh 9,000.00
Werezi Extended Catalogue
Delivery in 28 days
Delivery Location
Delivery fee: Select location
Delivery in 28 days
Secure
Quality
Fast
The present monograph further develops the study, via the techniques of combinatorial anabelian geometry, of the profinite fundamental groups of configuration spaces associated to hyperbolic curves over algebraically closed fields of characteristic zero. The starting point of the theory of the present monograph is a combinatorial anabelian result which allows one to reduce issues concerning the anabelian geometry of configuration spaces to issues concerning the anabelian geometry of hyperbolic curves, as well as to give purely group-theoretic characterizations of the cuspidal inertia subgroups of one-dimensional subquotients of the profinite fundamental group of a configuration space. We then turn to the study of tripod synchronization, i.e., of the phenomenon that an outer automorphism of the profinite fundamental group of a log configuration space associated to a stable log curve inducesthe same outer automorphism on certain subquotients of such a fundamental group determined by tripods [i.e., copies of the projective line minus three points]. The theory of tripod synchronization shows that such outer automorphisms exhibit somewhat different behavior from the behavior that occurs in the case of discrete fundamental groups and, moreover, may be applied to obtain various strong results concerning profinite Dehn multi-twists. In the final portion of the monograph, we develop a theory of localizability, on the dual graph of a stable log curve, for the condition that an outer automorphism of the profinite fundamental group of the stable log curve lift to an outer automorphism of the profinite fundamental group of a corresponding log configuration space. This localizability is combined with the theory of tripod synchronization to construct a purely combinatorial analogue of the natural outer surjection from the étale fundamental group of the moduli stack of hyperbolic curves over the field of rational numbers to the absolute Galois group of the field of rational numbers.
Get Topics Surrounding the Combinatorial Anabelian Geometry of Hyperbolic Curves II by at the best price and quality guaranteed only at Werezi Africa's largest book ecommerce store. The book was published by Springer Verlag, Singapore and it has pages.