Smooth Homogeneous Structures in Operator Theory
Book Details
Format
Paperback / Softback
ISBN-10
0367391899
ISBN-13
9780367391898
Publisher
Taylor & Francis Ltd
Imprint
Chapman & Hall/CRC
Country of Manufacture
GB
Country of Publication
GB
Publication Date
Oct 23rd, 2019
Print length
318 Pages
Weight
590 grams
Product Classification:
AlgebraCalculus & mathematical analysisGeometry
Ksh 12,250.00
Werezi Extended Catalogue
Delivery in 28 days
Delivery Location
Delivery fee: Select location
Delivery in 28 days
Secure
Quality
Fast
Geometric ideas and techniques play an important role in operator theory and the theory of operator algebras. Requiring only a moderate familiarity with functional analysis and general topology, Smooth Homogeneous Structures in Operator Theory builds the background needed to understand this circle of ideas and reports on recent developments in this fruitful field of research. The author provides complete arguments for nearly every result. An extensive list of references and bibliographic notes provide a clear picture of the applicability of geometric methods in functional analysis, and the open questions presented throughout the text highlight interesting new research opportunities.
Geometric ideas and techniques play an important role in operator theory and the theory of operator algebras. Smooth Homogeneous Structures in Operator Theory builds the background needed to understand this circle of ideas and reports on recent developments in this fruitful field of research.
Requiring only a moderate familiarity with functional analysis and general topology, the author begins with an introduction to infinite dimensional Lie theory with emphasis on the relationship between Lie groups and Lie algebras. A detailed examination of smooth homogeneous spaces follows. This study is illustrated by familiar examples from operator theory and develops methods that allow endowing such spaces with structures of complex manifolds. The final section of the book explores equivariant monotone operators and Kähler structures. It examines certain symmetry properties of abstract reproducing kernels and arrives at a very general version of the construction of restricted Grassmann manifolds from the theory of loop groups.
The author provides complete arguments for nearly every result. An extensive list of references and bibliographic notes provide a clear picture of the applicability of geometric methods in functional analysis, and the open questions presented throughout the text highlight interesting new research opportunities.
Daniel Beltitâ is a Principal Researcher at the Institute of Mathematics "Simion Stoilow" of the Romanian Academy, Bucharest, Romania.
Requiring only a moderate familiarity with functional analysis and general topology, the author begins with an introduction to infinite dimensional Lie theory with emphasis on the relationship between Lie groups and Lie algebras. A detailed examination of smooth homogeneous spaces follows. This study is illustrated by familiar examples from operator theory and develops methods that allow endowing such spaces with structures of complex manifolds. The final section of the book explores equivariant monotone operators and Kähler structures. It examines certain symmetry properties of abstract reproducing kernels and arrives at a very general version of the construction of restricted Grassmann manifolds from the theory of loop groups.
The author provides complete arguments for nearly every result. An extensive list of references and bibliographic notes provide a clear picture of the applicability of geometric methods in functional analysis, and the open questions presented throughout the text highlight interesting new research opportunities.
Daniel Beltitâ is a Principal Researcher at the Institute of Mathematics "Simion Stoilow" of the Romanian Academy, Bucharest, Romania.
Get Smooth Homogeneous Structures in Operator Theory by at the best price and quality guaranteed only at Werezi Africa's largest book ecommerce store. The book was published by Taylor & Francis Ltd and it has pages.